必一运动官网
新闻中心
必一体育官网平台
  • 联系人:计庆贺
  • 手 机:15190344023
  • 电 话:15061758899
  • 邮 箱:hobbm@bqshw.com
  • 地 址:无锡市锡山区东方国际轻纺城D1-12
在线咨询

必一运动官网:全面认识二极管一篇文章就够了

2023-11-26 04:14:09
阅读: 1
来源:必一体育app下载 作者:必一体育官网平台

  二极管作为最基础的晶体管,在电子电路应用中无所不在,博主在电路小课堂专栏里面的电路总结,不管是电平转换电路,电源自动切换电路,防反接电路,都有二极管的影子。

  虽然二极管很基础,相对其他晶体管来说它是简单的,但是他的种类繁多,不同的类型应用场景也不相同,那么在我们平时电路设计上如何选择合适的二极管,以及了解不同种类的二极管的应用场景就很重要了。

  说明,本文的核心在于了解二极管的分类和应用,说明不同二极管的不同应用场合,一些基础的说明会使用引用,但是博主还是会对每个部分做总结说明。

  其中了解一下 导电能力介于导体和绝缘体之间的物质称为半导体。常见的半导体有硅(Si)和锗(Ge)。二极管由半导体的材料制成,有硅二极管和锗二极管之分。

  那么其中 P型半导体 和 N型半导体 的解释,在全面认识MOS管,一篇文章就够了一文中已经简单介绍过了,这里截取文中图片:

  3 二极管就是由一个由 P 型半导体和 N 型半导体形成的 PN 结加上相应的电极引线及管壳封装而成的。

  二极管的工作原理要说清楚,需要从他的根本 PN 结说起,从 PN 结形成的原理分析,还需要分析 P 型半导体的形成,N 型半导体的形成等等。

  如果要实实在在的说清楚,至少需要图文并茂,如果能够有视频讲解就更好了,博主这里参考了网上大量的文章和视频,推荐几个博主认为说明的比较细致的文章和视频(本文的侧重点还是在分类和应用上,这个原理已经有很多好的文章和视频):

  3 二极管工作的原理简单概括为: PN结加正向电压时,呈现低电阻,具有较大的正向扩散电流; PN结加反向电压时,呈现高电阻,具有很小的反向漂移电流。 PN结具有单向导电性。

  正向特性(外加正向电压,上图中X坐标的正半部分) 当正向电压超过某一数值后,二极管才有明显的正向电流,该电压值称为导通电压。 在室温下,硅管的Vth约为0.5V,锗管的Vth约为0.1V。 大于导通电压的区域称为导通区。 当流过二极管的电流I比较大时,二极管两端的电压几乎维持恒定,硅管约为0.6~0.8V(通常取0.7V),锗管约为0.2~0.3V(通常取0.2V)。

  反向特性(外加正向电压,上图中X坐标的负半部分) 在反向电压小于反向击穿电压的范围内,由少数载流子形成的反向电流很小,而且与反向电压的大小基本无关。 此部分为截止区。 由二极管的正向与反向特性可直观的看出:①二极管是非线性器件;②二极管具有单向导电性。

  反向击穿特性 当反向电压增加到某一数值VBR时,反向电流急剧增大,这种现象叫做二极管的反向击穿。

  记住一句线温度升高会导致正向特性左移(导通电压降低,正向压降降低),反向特性下移(反向电流增加)。

  3采取适当的掺杂工艺,可将硅PN结的雪崩击穿电压可控制在8~1000V。而齐纳击穿电压低于5V。

  在使用二极管的过程中,如由于反向电流和反向电压过大,使得PN结功耗变大,超过PN结的允许功耗,温度上升直到过热使PN结击穿的现象叫热击穿。

  二极管的参数在每一个二极管的手册上面都有说明,这里我使用常用的 1N4148WS 做个说明:

  但是现在来说明参数的时候,我确实对这里有点疑问,翻译过来这个正向连续电流到底是怎么一回事?后来仔细想了想,这个正向连续电流其实就是其他文中说参数的 最大整流电流 IF(有错误请指出)。 他居然是平均整流电流的1倍。 但是实际上使用起来,如果设计上不考虑冗余的话,电路也是容易出问题的。

  这个参数其他文章都没有特别说明,但是我觉得我实际应用中,更多的是参考这个参数进行设计的。 就是电流部分,设计起来都会直接参考 平均整流电流 设计,所以下面的所说的最大整流电流,肯定不会达到。

  就是面二极管参数图片中的 正向连续电流。二极管长期连续工作时允许通过的最大正向电流值。我建议使用 Io 做参考,所以这里了解一下,关注电流的原因就是电流越大管子越热。

  注意!有些二极管上并没有 IF 这个参数,只有 Io,此时 Io 就可以认为是最大整流电流。

  包括所有重复瞬态电压,不包括不重复瞬态电压。 通常是与电路相关,比如交流信号是正弦曲线,每个周期都会有一个最高点,这个最高点就可以说是,重复峰值电压。

  不重复峰值电压,通常由外部因素引起,半导体整流二极管两端出现的任何不重复最大瞬时值的瞬态方向电压。可以认为就是二极管最高反向工作电压。首先从应用上来看,在上图中他们都相等,即便我们不知道细节也可以正常的使用这个二极管。 就算他们不相等,我们在设计的时候选取最小的就可以。

  二极管两端允许施加的最大反向电压。若大于此值,则反向电流(IR)剧增,二极管的单向导电性被破坏,从而引起反向击穿。通常取反向击穿电压(VBR)的一半作为(VRM)。

  反向电流是指二极管在规定的温度和反向电压作用下,流过二极管的反向电流。不同的反向电压下的反向电流肯定是不一样的。 反向电流越小,管子的单方向导电性能越好。反向电流与温度密切相关,大约温度每升高10℃,反向电流增大一倍。 硅二极管比锗二极管在高温下具有较好的稳定性。

  上图中的二极管 反向电压为 75V 时,反向电流为 1uA, 反向电压为 20V 时,反向电流为 25nA。

  上文中的标题是 Capacitance between terminals ,这个结电容的大小直接表示了 二极管的 频率特性。 由于结电容的存在,当频率高到某一程度时,容抗小到使 PN 结短路。导致二极管失去单向导电性,不能工作,PN 结面积越大,结电容也越大,越不能在高频情况下工作。

  现在的二极管手册都会告诉你,在什么情况下二极管的结电容是多少,而不会直接给出工作频率这个参数

  从正向电压变成反向电压时,电流一般不能瞬时截止,要延迟一点时间,这个时间就是反向恢复时间。 这个参数决定了二极管的开关速度。

  3 二极管参数不止上面列举的这些,但是实际一般使用,知道这些参数就已经能够安全的进行电路设计了。

  万用表调整至二极管档位,红表笔接二极管 + 极,黑表笔接二极管 - 极,可以看到有一个电压值,就个电压值就是二极管的导通压降(0.2~0.8V 不同二极管电压值不同),反过来接,没有电压值显示(无穷大)。

  如果是发光二极管,红表笔连接至发光二极管 + 极,黑表笔连接至 - 极,可以点亮发光二极管。

  3 总的来说,外观上看二极管的负极会有标识(一般是横杆),现在的万用表可以很方便的测量出正负极,和二极管的好坏。

  在上面的封装中,都是由多个二极管的组成进行封装的,为什么会有这些类型的组合封装的二极管呢?这就是我们要说明的问题。

  如果选择多个独立的二极管,即便型号一样,生产厂家一样,生产批次一样,两个二极管之间的性能特性,也会有一定的差异;

  使用上面组合形式封装的二极管,相对来说! 是相对来说,多个二极管之间的差异会比单独的二极管小得多,在一些特除场合更能保证性能的一致性!

  再者,我们在设计电路的时候,因为布局走线问题,使用独立的二极管也会导致并联的二极管存在性能差异,如果使用上面组合形式封装的二极管,可以避免这种不一致问题的存在,减少电路问题。

  3 在电路设计时候,使用组合形式封装的二极管比使用独立元器件更加稳定可靠,在某些特殊场合尽量使用组合封装的二极管(ESD防护,桥堆)。

  对于我们一般二极管选型使用来说,都是以用途来选择,所以我们主要是从用途上来说明一下这些不同二极管的使用场景。 当然,根据博主自己的工作领域,对于有些二极管说明会详细写,有一些会简单些,带标题的都是常用的,其他的用得少不常用简单描述一下= =!。

  对于肖特基二极管,需要特别说明,它不是利用P型半导体与N型半导体接触形成PN结原理制作的,而是利用金属与半导体接触形成的金属-半导体结原理制作的。

  所以也 肖特基二极管也称为金属-半导体(接触)二极管或表面势垒二极管,它是一种热载流子二极管。

  特点:开关频率高,为反向恢复时间极短(可以小到几纳秒),正向压降低,正向导通压降仅0.4V左右。

  用途:多用作高频、低压、大电流整流二极管、续流二极管、保护二极管,也有用在微波通信等电路中作整流二极管、小信号检波二极管使用。在通信电源、变频器等中比较常见。

  TVS管在电路中一般工作于反向截止状态,不影响电路的任何功能,当两端经受瞬间的高能量冲击时,它能以极高的速度(最高达1/(10^12)秒)使其阻抗骤然降低,同时吸收一个大电流,将其两端间的电压箝位在一个预定的数值上,从而确保后面的电路元件免受瞬态高能量的冲击而损坏。干扰脉冲过去后,TVS又转入反向截止状态。由于在反向导通时,其箝位电压低于电路中器件的最高耐压,因此起到了对元器件的保护作用。

  选择TVS之前,我们首先要明白选择的终极目标:: 1.电压合适能保护后级电路; 2.引入的TVS的结电容不能影响电路;功率余量充足,满足测试标准,且不能比保险管先挂。选型的过程可以按照以下的步骤进行: (1) 选择TVS最高工作电压Vrmw; (2) 选择TVS钳位电压VC; (3) 选择TVS的功率; (4) 评估漏电流IR的影响; (5) 评估结电容的影响;

  选择TVS最高工作电压Vrmw; 在电路正常工作情况下,TVS 应该是不工作的,即处于截止状态,所以 TVS 的截止电压应大于被保护电路的最高工作电压。这样才能保证 TVS 在电路正常工作下不会影响电路工作。但是 TVS 的工作电压高低也决定了 TVS 钳位电压的高低,在截止电压大于线路正常工作电压的情况下,TVS 工作电压也不能选取的过高,如果太高,钳位电压也会较高,所以在选择 Vrwm 时,要综合考虑被保护电路的工作电压及后级电路的承受能力。要求Vrwm要大于工作电压,否则工作电压大于Vrwm会导致TVS反向漏电流增大,接近导通,或者雪崩击穿,影响正常电路工作。综合考虑,Vrwm可以参考以下的公式: Vrwm≈1.1~1.2*VCC ;--------其中VCC为电路的最高工作电压。

  选择选择TVS钳位电压VC; TVS 钳位电压应小于后级被保护电路最大可承受的瞬态安全电压,VC 与 TVS 的雪崩击穿电压及 IPP 都成正比。对于同一功率等级的 TVS,其击穿电压越高 VC 也越高,所选TVS的最大箝位电压Vc不能大于被防护电路可以承受的最大电压。否则,当TVS钳在Vc时会对电路造成损坏。Vc可以参考以下的公式: VC<Vmax ;-----其中Vmax为电路能承受的最高电压.

  选择TVS的功率Pppm(或者Ipp); TVS 产品的额定瞬态功率应大于电路中可能出现的最大瞬态浪涌功率,理论上,TVS的功率越大越好,能够承受更多的冲击能量和次数,但是功率越高,TVS的封装越大,价钱也越高,所以,TVS的功率满足要求即可。对于不同功率等级的 TVS,相同电压规格的 TVS 其 VC 值是一样的,只是 IPP 不同。故 Pppm 与 Ippm成正比,Ippm 越大,Pppm 也越大。对于某一电路 ,有对应的测试要求,设实际电路中的最大测试电流为 Iactual ,则 Iactual 可估算为:Iactual=Uactual/Ri;---------其中 Uactual 为测试电压,Ri为测试内阻。 TVS 要通过测。